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Purpose. Development of externally predictive Quantitative Structure–Activity Relationship (QSAR)
models for Blood–Brain Barrier (BBB) permeability.
Methods. Combinatorial QSAR analysis was carried out for a set of 159 compounds with known BBB
permeability data. All six possible combinations of three collections of descriptors derived from two-
dimensional representations of molecules as chemical graphs and two QSAR methodologies have been
explored. Descriptors were calculated by MolconnZ, MOE, and Dragon software. QSAR methodologies
included k-Nearest Neighbors and Support Vector Machine approaches. All models have been rigorously
validated using both internal and external validation methods.
Results. The consensus prediction for the external evaluation set afforded high predictive power (R2=
0.80 for 10 compounds within the applicability domain after excluding one activity outlier). Classification
accuracies for two additional external datasets, including 99 drugs and 267 organic compounds, classified
as permeable (BBB+) or non-permeable (BBB−) were 82.5% and 59.0%, respectively. The use of a fairly
conservative model applicability domain increased the prediction accuracy to 100% and 83%,
respectively (while naturally reducing the dataset coverage to 60% and 43%, respectively). Important
descriptors that affect BBB permeability are discussed.
Conclusion. Models developed in these studies can be used to estimate the BBB permeability of drug
candidates at early stages of drug development.

KEY WORDS: combinatorial QSAR; k-nearest neighbors; model validation; predictors of BBB
permeability; support vector machines.

INTRODUCTION

The blood–brain barrier (BBB) separates the brain from
the bloodstream and limits the transport of many substances
from the systemic circulation into the brain tissue. The
concept of the BBB and the mechanism of its functionality
have been described in several reviews (1–3). The ability of
an organic chemical to penetrate the brain can be estimated
by measuring its brain-to-blood concentration ratio (BB),

which is defined as the ratio of drug concentration in brain
tissue to the drug concentration in blood.

Brain penetration is one of the major parameters that are
taken into consideration in chemical toxicological studies and in
drug design.Any drugmolecule targeting a receptor in the brain
must first cross the BBB to realize its therapeutic potential. On
the other hand, for a drug candidate not aimed at the Central
Nervous System (CNS), passage across the BBB could induce
undesirable side effects. The experimental determination of the
brain-to-blood concentration ratio requires complex techniques
that are expensive and time-consuming. Therefore, rapid and
accurate computational methods for screening large chemical
databases or virtual libraries are desirable to assist the
experimental drug discovery process.

There have been many attempts to correlate the experi-
mental brain-to-blood concentration ratio values, which is
always represented by its logarithm (logBB), with physical–
chemical parameters. Table I lists some of the previous QSAR
studies of BBB permeability.

Young and co-workers conducted what we believe to be
the first QSAR study of brain–blood distribution in 1988 (4).
They reported the in vivo values in rats for a large number of
H2 receptor histamine agonists, and found that the Seiler
parameter, which is defined as logP(o/w)− logP(cycl/w)
(where (P(o/w) and P(cycl/w) are the octanol/water and
cyclohexane/water partition coefficients, respectively), is
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related to the logBB values for a series of 20 histamine
antagonists. Following this first study, Abraham (5,6), Lom-
bardo (7), Subramanian (8), Clark (9), Luco (10), Feher (11),
Kelder (12), Brewster (13), Norinder (14) and their co-
workers have added more data to the “Young dataset” and
developed new logBB models that achieved higher statistical
significance and better predictivity. The parameters used in
these studies were lipophilicity, solvatochromic parameters,
topological indices, and combinations of these parameters.
Based on these reports, three properties, i.e., molecular
volume, lipophilicity, and hydrogen bonding potential, were
identified as contributing significantly to the transport through
the BBB. However, the relationship between these properties
and the brain–blood distribution remained obscure, and a
relatively good correlation could be achieved only for small
sets of molecules. Furthermore, some of the previous models
were limited to retrospective analysis of historic data lacking
external validation to prove their predictive ability. As we and
others have shown (15–17) the internal measures of QSAR
model accuracy are not indicative of a models’ external
predictive power. Furthermore, the so called OECD principles
introduced by the QSAR Working Group of the OECD (18)
explicitly recommend to include external validation as a
mandatory component of model development. Thus, many
previously published QSAR models of BBB permeability may
in fact have unproven predictive power.

For this study, we have compiled the largest (to our
knowledge) dataset of 159 compounds with quantitatively
measured logBB using data from all previous publica-
tions. The dataset was randomly split into a modeling set
of 144 compounds and an external evaluation set of 15
compounds. The former set was used to develop QSAR
BBB models using different types of descriptors and
modeling approaches in the context of a combinatorial
QSAR modeling approach that we began to advocate for
recently (19–21). All models were subjected to rigorous
internal and external validation. The resulting validated
models were used to predict the logBB values of the
external evaluation set. Furthermore, two additional data-
sets containing 99 and 267 compounds, respectively, which
were classified as BBB permeable (BBB+) or BBB non-
permeable (BBB−), were also used for model validation.
The results confirmed the high external prediction accuracy
of our models, which led us to conclude that these models
can be used reliably to evaluate BBB permeability of
organic compounds. The successful validation allowed us
to interpret our models in the context of chemical descrip-
tors that were found to be significant and consequently
responsible for the level of the BBB permeability of studied
molecules. The models developed and validated in our
studies can be used as reliable predictors of BBB perme-
ability of organic molecules.

Table I. Summary of Previous QSAR Studies of the BBB Permeability

Group Ndes Descriptors Ntrain R2
train q2train Strain Next Ptest

Young (4) 1 logP 20 0.69 – 0.439 – –
Kansy (9) 2 PSA and molecular volume 20 0.697 – 0.448 – –
Abraham (6) 5 Molecular property descriptors 57 – 0.91 0.197 – –
Lombardo (7) 1 Free energy of solvation 55 0.67 – 0.41 6 –
Clark (9) 2 PSA and logP 55 0.787 – 0.354 5 MAE=0.24
Luco (10) 18 Topological and constitutional

descriptors
58 0.850 0.752 0.318 22 RMSE=0.408

Feher (11) 3 Number of hydrogen-bond acceptors,
logP, PSA

61 0.73 0.688 RMSE=0.424 25 RMSE=0.789

Kelder (12) 1 Dynamic PSA 45 0.841 – – – –
Norinder (14,23) 14 Molecular property descriptors 28 0.862 0.782 0.311 28 RMSE=0.353
Platts (24) 6 Molecular property descriptors 148 0.745 0.711 0.343 – –
Keseru (67) 1 Solvation free energies 55 0.72 – 0.37 5 MAE=0.14
Salminen (68) 3 Lipophilicity, molecular size and

acid/base character
23 0.848 – 0.32 – –

Ma (69) 8 Inter- and intra-molecular solute
descriptors

37 0.912 – 0.232 8 –

Katritzky (70) 5 ClogP, etc. 113 0.781 0.752 0.351 19 0.032
Hou (71) 3 High-charged PSA, logP, MW360 72 0.785 – 0.358 – –
Iyer (60) 5 PSA, clogP and membrane-solute

descriptors
56 0.845 0.795 – 7 –

Pan (72) 2 TPSA and clogP 37 0.85 0.83 – 46 R2=0.76
Subramanian (8) 8 AlogP 58 0.845 0.811 0.314 39 RMSE=0.463
Rose (60) 3 E-state index and molecular

connectivity index
102 0.66 0.62 0.48 28 –a

Winkler (73) 7 Property-based descriptors 106 0.81 0.65 RMS=0.37 – –

Ndes: number of descriptors used, Ntrain: number of compounds in the training set, R2
train: squared correlation coefficient between predicted

and experimental logBB values for the model derived from the training set, q2 train: the cross-validated R2 value for the model derived from the
training set, Strain: the standard deviation for the model derived from the training set, Next: number of compounds in the external evaluation set,
Ptest: test set predictive performance, PSA: polar surface area, MAE: mean absolute error of prediction for the compounds in the external
evaluation set, RMS: root mean square, RMSE: root mean squared error
aDetailed prediction results such as R2 or MAE weren’t shown.
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Table II. Compounds Included in the Modeling Set and the First
External Evaluation Set

Comp. no. Comp. name or id Exp. logBB

1. 11a −1.17
2. 12 −2.15
3. 19 −1.54
4. Terbutylchlorambucil 1.00
5. Org12692 1.64
6. Org13011 0.16
7. Org34167 0
8. M2L-663581 −1.82
9. RO19-4603 −0.25
10. 15 −0.12
11. 16 −0.18
12. 17 −1.15
13. 24 −0.46
14. 33 −0.3
15. 36 0.89
16. SKF89124 −0.43
17. Org4428 0.82
18. Org5222 1.03
19. Org32104 0.52
20. Org30526 0.39
21. 9-OH risperidone −0.67
22. Compound 31 −0.67
23. Compound 32 −0.66
24. Compound 34 −1.57
25. Compound 35 −1.12
26. Compound 36 −0.73
27. Compound 37 −0.27
28. Compound 38 −0.28
29. Compound 40 −0.24
30. Compound 41 −0.02
31. Compound 42 0.69
32. Compound 43 0.44
33. Compound 45 0.22
34. Nor-1-chlorpromazine 1.37
35. 2-(3′-Iodo-4′-aminophenyl)-

6-hydroxybenzothiazole
0.176

36. SB-656104-A −0.0457
37. Alovudine −0.605
38. Granisetron −0.687
39. Zidovudine −0.886
40. Tamoxifen 0.924
41. Desmethyldesipramine 1.06
42. Phenylbutazone −0.52
43. Desipramine 1.2
44. Imipramine 0.83
45. Thioridazine 0.24
46. Chlorpromazine 1.06
47. Acetylsalicylic acid −0.5
48. Verapamil −0.7
49. Haloperidol 1.34
50. Indomethacin −1.26
51. Hexobarbital 0.1
52. Quinidine −0.46
53. Phenytoin −0.04
54. Amobarbital 0.04
55. Caffeine −0.055
56. Aminopyrine 0
57. Promazine 1.23
58. Theophylline −0.29
59. Diethyl ether 0
60. Antipyrine −0.097
61. Ethanol −0.16

62. 2-Propanol −0.15
63. Propanone −0.15
64. Trichloromethane 0.29
65. Hydroxyzine 0.39
66. Fluphenazine 1.51
67. Salicylic acid −1.1
68. Propanol −0.16
69. Benzene 0.37
70. 1,1,1-Trichloro-ethane −0.6
71. 2,2-Dimethylbutane 1.04
72. 1,1,1-Trifluro-2-chloroethane −0.92
73. Pentobarbital 0.12
74. Thiopental −0.14
75. 2-Methylpropanol −0.17
76. Butanone −0.08
77. Theobromine −0.28
78. mepyramine 0.49
79. 3-Methylpentane 1.01
80. Methylcyclopentane 0.93
81. Valproic acid −0.22
82. Acetaminophen −0.31
83. 2-Methylpentane 0.97
84. Toluene 0.37
85. Pentane 0.76
86. Hexane 0.8
87. Heptane 0.81
88. Halothane 0.35
89. Methohexital −0.06
90. BCNU −0.52
91. carbamazepine 0
92. Chlorambucil −1.7
93. Fluroxene 0.13
94. Teflurane 0.27
95. Diazepam 0.52
96. Salicyluric acid −0.44
97. Propanolol 0.64
98. 3-Methylhexane 0.9
99. Oxazepam 0.61
100. Paraxanthine 0.06
101. Desmethyldiazepam 0.5
102. Codeine 0.55
103. Flunitrazepam 0.06
104. Nor-2-chlorpromazine 0.97
105. Desmonomethylpromazine 0.59
106. Mesoridazine −0.36
107. Tibolone 0.4
108. Y-G 14 −0.3
109. Y-G 15 −0.06
110. 2 −0.04
111. Bromperidol 1.38
112. Northioridazine 0.75
113. Sulforidazine 0.18
114. Ibuprofen −0.18
115. Clobazam 0.35
116. Mianserin 0.99
117. Isoflurane 0.42
118. Triazolam 0.74
119. Atenolol −1.42
120. Zidovudine −0.72
121. Carbamazepine-10,11-epoxide −0.35
122. Y-G 20 −1.4
123. Cimetidine −1.42
124. Domperidone −0.78

Table II. (continued)

Comp. no. Comp. name or id Exp. logBB
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METHODOLOGY

Datasets

A set of 159 unique compounds with known logBB
values was compiled from several publications (22–24). This
set included the Young, Salminen and Kelder data sets, as
well as seven additional compounds (See Table II and
Supplemental Materials). The range of logBB of the 159
compounds was −2.15 to 1.64. The dataset was divided randomly
into two subsets: the modeling set (n=144) and the external
evaluation set (n=15). Following our standard protocol (25), the
modeling set was additionally divided into multiple training and
test sets to allow for the development and validation of QSAR
models, respectively. The second external evaluation set was
derived from the WOMBAT-PK dataset (26) (cf. Supplemental
Materials), which included 99 commercially available drugs. The
third external evaluation set of 267 organic compounds was
derived from a recent publication (27) (cf. Supplemental
Materials). The duplicate compounds (identical to those in the

modeling set) in the two external evaluation datasets, as well as
any inorganic compounds, were removed. Compounds in the
second and the third evaluation sets were classified as permeable
(BBB+) or non-permeable (BBB−) from their respective data
sources. Thus, to afford the binary interpretation of predictions
made with QSAR models developed using real logBB values for
the modeling set, we followed the definitions in (27), i.e.,
compounds with experimental logBB<−1 were classified as
relatively poor penetrators of the BBB barrier (i.e., BBB−),
while compounds with logBB>−1 were classified as relatively
good penetrators of the BBB (i.e., BBB+).

Computational Methods

A combinatorial QSAR (Combi-QSAR) approach (19–21),
employing six combinations of three descriptor types and two
types of optimization methods as described below, was used for
QSAR studies of the BBB datasets.

Descriptors

Descriptor types used in this study are considered in the
following sections. Each type of descriptors was used
separately with each QSAR method in the context of our
Combi-QSAR strategy (19–21).

MolConnZ 4.05 Descriptors

MolConnZ descriptors include valence, path, cluster, path/
cluster and chain molecular connectivity indices (28–30), kappa
molecular shape indices (31,32), topological (33) and electro-
topological state indices (34–37), differential connectivity indices
(29,38), graph’s radius and diameter (39), Wiener (40) and Platt
(41) indices, Shannon (42) and Bonchev-Trinajstić (43) informa-
tion indices, counts of different vertices, counts of paths and
edges between different types of vertices (http://www.edusoft-lc.
com/molconn/manuals/400). Descriptors with zero values or zero
variance were removed; the remaining descriptors were normal-
ized by range-scaling so that their values were distributed within
the interval between 0 and 1. The total number of descriptors
used in model development was 346.

MOE Descriptors

2D MOE descriptors (Chemical Computing Group;
http://www.chemcomp.com/software.htm) include physical
properties, subdivided surface areas, atom counts and bond
counts, Kier and Hall connectivity (28–30) and kappa shape
indices (31,32), adjacency and distance matrix descriptors
(39,40,44,45), pharmacophore feature descriptors and partial
charge descriptors (Chemical Computing Group; http://www.
chemcomp.com/software.htm) (45). MOE descriptors were
range-scaled. 3D MOE descriptors were not used. Prior to
QSAR studies, low variance descriptors (with variance less
than 0.05) were eliminated. The final number of descriptors
used in QSAR studies was 184.

Dragon Descriptors

A set of 929 theoretical molecular descriptors was comput-
ed using DRAGON software (46). The descriptors were

125. Midazolam 0.36
126. 4-Hydroxymidazolam −0.3
127. 1-Hydroxymidazolam −0.07
128. ranitidine −1.23
129. Tiotidine −0.82
130. Didanosine −1.3
131. SKF 93319 −1.3
132. Icotidine −2
133. Flumazenil −0.29
134. Lupitidine −1.06
135. Bretazenil −0.09
136. Temelastine −1.88
137. SKF101468 0.25
138. Phenserine 1
139. Zolantidine 0.14
140. Thioperamide −0.161
141. Risperidone −0.02
142. MIL-663581 −1.34
143. Indinavir −0.74
144. SB-222200 0.3
145. Lamotrigine −0.081
146. Morphine −0.16
147. Physostigmine 0.079
148. Methoxyflurane 0.25
149. Trichloroethene 0.34
150. Trifluoroperazine 1.44
151. clonidine 0.11
152. Enflurane 0.24
153. Y-G 16 −0.42
154. Desmethylclobazam 0.36
155. Alprazolam 0.044
156. Mirtazapine 0.53
157. Y-G 19 −1.3
158. Nevirapine 0
159. SKF-93619 −1.3

Compounds no. 1–144 are in the modeling set and 145–159 are in the
first external evaluation set.
aCompound names are the same as those in references (22–24).

Table II. (continued)

Comp. no. Comp. name or id Exp. logBB
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generated from the SMILES notation available for each
compound. The typology of the included descriptors is: 0D-
constitutional (atom and group counts); 1D-functional groups;
1D-atom centred fragments; 2D-topological descriptors; 2D-
walk and path counts; 2D-autocorrelations; 2D-connectivity
indices; 2D-information indices; 2D-topological charge indices;
2D-Eigenvalue-based indices; 2D-topological descriptors; 2D-
edge adjacency indices; 2D-Burden eigenvalues; molecular
properties. Constant and near to constant variables were
deleted. If two descriptors were at least 99% correlated one
of them was deleted. The final set used in QSAR studies
included 324 descriptors. Dragon descriptors were range-
scaled. The calculation procedures for these descriptors, with
related literature references, are reported in (47).

QSAR Methods

Training set models were built using variable selection
kNN and SVM approaches that were implemented in our
group. The kNN QSAR method (48) employs the kNN
classification principle and the variable selection procedure.
Briefly, initially a subset of nvar (number of selected variables)
descriptors is selected randomly. The nvar is set to different
values to obtain the best q2 possible. The models are
optimized by leave-one-out cross-validation, where each
compound is eliminated from the training set and its biological
activity is predicted as the weighted average activity of k most
similar molecules (k=1 to 5). The similarity is characterized by
Euclidean distances between compounds in multidimensional
descriptor space. A simulated annealing method with the
Metropolis-like acceptance criteria is used to optimize the
selection of variables.

The SVM regression approach (49) attempts to find the
narrowest band in the descriptor-activity space containing most
of the data points; it can be divided into linear or nonlinear
SVM depending on the type of a kernel function used to
construct the model. In this study, the linear SVM regression
was used. The generalized performance of SVM depends on
the selection of several internal parameters of the algorithm (C
and ɛ). To find models with the highest accuracy for both
training and test sets, the calculations were carried out for all
combinations of C and ɛ with the C value varying from 0.1 to
100 with a step of 10, and ɛ varying from 0.0 to 0.5 with a step
of 0.34. For example, if the total number of training/test sets
generated for one type of descriptors was 36, 36� 10� 2 ¼
720 models were constructed. Further details of the kNN and
SVM method implementation are given elsewhere (20,21,50).

Validation of QSAR Models

As emphasized in one of our previous reports (17),
training-set-only modeling is insufficient to achieve models
with validated predictive power. For this reason, the 144-
compound modeling set was divided into multiple training/
test sets using the sphere-exclusion algorithm (25). For each
collection of descriptors, the modeling set was divided into
36–50 training/test sets of different relative sizes. The kNN
and SVM QSAR models were developed solely based on
training sets that were part of the modeling set, and the
resulting models were validated through predicting the BBB
permeability of the compounds in the respective test sets. The

statistical significance of the kNN and SVM QSAR BBB
models was characterized by the following parameters (17).
(1) LOO cross-validated q2; (2) square of the correlation
coefficient R between the predicted and observed activities;
(3) coefficients of determination (predicted versus observed
activities R2

0 , and observed versus predicted activities R02
0 );

(4) slopes k and k′ of regression lines (predicted versus
observed activities, and observed versus predicted activities)
through the origin. These criteria are calculated according to
the previous paper (17). The importance of this procedure
was discussed in previous publications (25,51).

We considered a QSAR model to have an acceptable
predictive power if the following conditions were satisfied:

q2 > 0:65; ð1Þ

R2 > 0:65; ð2Þ

R2 � R2
0

� �

R2 < 0:1 and 0:85 � k � 1:15; ð3aÞ

or

R2 � R02
0

� �

R2 < 0:1 and 0:85 � k0 � 1:15; ð3bÞ

and

R2
0 � R02

0

�� �� < 0:3: ð4Þ

The Mean Absolute Error (MAE) was also used to
estimate the predictive power of QSAR models for self-
correlation and to predict the first external evaluation set.
For the second and third external evaluation sets, besides the
overall prediction accuracy calculated as the fraction of
correctly classified compounds, we also used sensitivity (SE),
which is defined as (true positives)/(true positives+false
negatives) and specificity (SP), which is defined as (true
negatives)/(true negatives+false positives). SE and SP reflect
the accuracy of predicting the compounds of BBB+ and the
BBB− classes, respectively.

Applicability Domain (AD)

Formally, a QSARmodel can predict the target property for
any compound for which chemical descriptors can be calculated.
However, if a compound is highly dissimilar to all compounds of
the modeling set, the reliable prediction of its activity is unlikely.
A concept of the AD was developed and used to avoid such an
unjustified extrapolation of activity predictions. In this study, the
ADwas defined as a threshold distanceDT between a compound
under prediction and its closest nearest neighbor of the training
set, calculated as follows:

DT ¼ yþ Z�: ð5Þ

Here, y is the average Euclidean distance between each
compound and its k nearest neighbors in the training set
(where k is the parameter optimized in the course of QSAR

1906 Zhang et al.



modeling, and the distances are calculated using all descriptors
and descriptors selected by the optimized model only), σ is the
standard deviation of these Euclidean distances, and Z is an
arbitrary parameter to control the significance level. We set the
default value of this parameter Z to 0.5, which formally places
the allowed distance threshold at the mean plus one-half of the
standard deviation. Thus, if the distance of the external
compound from its nearest neighbor in the entire descriptor
space or the subspace of descriptors selected in the training set
exceeds this threshold, the prediction is not made (52).

Robustness of QSAR Models

Y-randomization (randomization of response) is a widely
used approach to establish model robustness. It consists of
rebuilding the models using randomized activities of the
training set and subsequent assessment of the model statistics.
It is expected that models obtained from the training set with
randomized activities should have significantly lower values
of q2 for the training set than the models built using training
set with real activities, or at least these models should not
have satisfied some of the validation criteria 1, 2, 3a, 3b, and 4
above. If this condition is not satisfied, real models built for
this training set are not reliable and should be discarded. This
test was applied to all data divisions considered in this study
and it was repeated twice for each division.

RESULTS AND DISCUSSION

QSAR Models

For the development of QSAR models, two optimiza-
tion methods, i.e., kNN and SVM were used, each with three
types of descriptors, i.e., Dragon, MOE and MolConnZ.
Consequently, six different types of QSAR models were
developed for the modeling set. Table III presents the
detailed information for all six types of models. It needs to
be pointed out that the prediction of a compound’s BBB
permeability was made by taking the average predicted
value using all models that satisfied the criteria discussed
above (cf. Methodology). Clearly, the statistical parameters
of models generated in our study with six types of QSAR
methods for the extended modeling set appear similar or

better than those obtained in previous studies (Table I). Of
course, the direct comparison is difficult since different
models were generated for different sets of compounds but
we stress that our dataset was by far larger than any of the
datasets studied previously (cf. Table I).

Self-correlation for the modeling set was carried out by
predicting the logBB values of all 144 compounds in the
modeling set that were used to develop QSAR models. The
self-correlation R2 values were higher than 0.75 for all six
types of models (Table III). Not surprisingly, the results for
the first external evaluation set were not as good as those for
the self-correlation (Supplemental Materials). For example,
the R2 values of the first external evaluation set (n=15)
prediction are much lower, even if the AD was applied.
Without applying the AD to the external evaluation set, the
R2 and MAE of the predictions of these 15 external
compounds range from 0.39 to 0.58 and 0.33 to 0.43,
respectively, for the six types of models. However, when the
AD is used, the values of R2 become significantly higher,
while MAE decreases (vide infra).

The Y-randomization test was performed, and the q2

values for the modeling set with the experimental logBB
values were shown to be significantly higher than those
obtained from the same dataset with randomized logBB
values. For the modeling set with real logBB values, there
were 530 models that satisfied the criteria of q2>0.65 and R2>
0.65 (Table III), whereas for the dataset with randomized
logBB values, only seven models that had q2 higher than 0.4
were generated, and the highest q2 was only 0.53. These
results indicate that our models are statistically robust.

Two additional datasets (described in Methodology)
were then considered to test the predictive ability of the six
types of models. They included 99 (the second external
evaluation set) and 267 (the third external evaluation set)
compounds. All compounds in both datasets were classified
as either BBB+ or BBB−. Thus, the predicted logBB values
for all compounds in these two datasets were converted into
BBB+ or BBB− using the same threshold that was used in the
analysis of the external evaluation sets (cf. Methodology).
The best models that predict the second and the third
external evaluation sets with the highest accuracy without
applying AD were those built with the kNN method and
MOE descriptors. The overall prediction accuracy, calculated
as the ratio of the number of correctly predicted compounds
to the total number of compounds in the external evaluation
set, was 82.5% and 59.0%, respectively (cf. black columns in
Fig. 1).

If we assess the predictive ability of models using SE
and SP, the best SE is as high as 100% while the best SP is
only 70.0%. The much higher predictive power for the
BBB+ compounds as compared to that for the BBB−
compounds can be explained by the biased distribution of
BBB+/BBB− compounds in the modeling set, which
includes significantly more BBB+ (logBB>−1) than BBB−
(logBB<−1) compounds (Fig. 2). This problem arises from
the fact that many of the BBB− compounds lack measur-
able logBB values because they can hardly go through the
BBB. Taking into account that the kNN algorithm is based
on similarity principle, it may not be surprising that these
models are able to predict BBB+ compounds better than
BBB− compounds.

Table III. Details of the Six Types of QSAR Models Developed with
144 Compounds in the Modeling Set

Model ID Model type Nmodels Ndes R2
self MAEself

1. kNN-Dragon 53 324 0.92 0.18
2. SVM-Dragon 37 324 0.86 0.27
3. kNN-MOE 170 184 0.75 0.31
4. SVM-MOE 12 184 0.82 0.24
5. kNN-MolConnZ 234 346 0.95 0.15
6. SVM-MolConnZ 24 346 0.87 0.25
Consensus self-correlation 0.91 0.21

Nmodels: number of accepted models (satisfying criteria 1, 2, 3a, 3b,
and 4; see Methodology), Ndes: number of descriptors used in the
model, R2

self: squared correlation coefficient between predicted and
experimental logBB values of self-correlation, MAEself : mean
absolute error of prediction for the self-correlation
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The Effect of the Applicability Domain

The AD defines the area of the descriptor space in which
QSAR models can accurately predict the target properties. If
a compound is “too dissimilar” (beyond the defined distance
cutoff value; see in Methodology) to all compounds of the
modeling set in the descriptor space then we assume that we
cannot predict its activity reliably. Thus, some compounds of

each external evaluation set were found outside of the AD
and defined as “impossible to predict”: Euclidean distances
between these compounds and their closest nearest neighbors
in the training set were exceeding the predefined similarity
threshold (defined by rather conservative Z cutoff=0.5). For
each external evaluation set, the number of compounds
within the AD was lower than the total number of com-
pounds, but the associated prediction accuracy increased
significantly. After applying the AD to the first evaluation
test set, the R2 increases for all the six types of models while
the coverage decreases (from 100% to 67–87%) compared to
those obtained without the implementation of the AD. The
R2 values obtained for three model types (kNN-Dragon,
SVM-Dragon and kNN-MolConnZ) were above 0.60, which
is quite significant when considering the small size and high
diversity of the modeling set used in this study.

Without applying the AD for the second and third
external evaluation sets, the best overall accuracy was
82.5% and 59.0%, respectively (black columns in Fig. 1).
This is similar to the classification BBB modeling results
reported earlier (27). After applying the AD, the best overall
prediction accuracy for the two additional external sets
increased to 100% and 83.3% (white columns in Fig. 1).
However, the increased accuracy came at the expense of
reducing the number of compounds for which the prediction
could be made. Thus, less than 60% of all compounds were
within the AD for the second external evaluation set, and
only 43% of all compounds in the third one. Notably, most of
the BBB− compounds in the external evaluation sets were
considered to be out of the AD and defined as “no
prediction” unlike BBB+ compounds (Fig. 3). This discrep-
ancy is caused by the biased distribution of BBB+/BBB−
compounds in the modeling set.

We have investigated the effect of varying the threshold
value of the AD on the interplay between chemical space
coverage and prediction accuracy. We have found that for the
first external evaluation set, the R2 decreases when Z cutoff
increases from 0.5 to 1 (data not shown). However, for the
second and third external evaluation sets, increasing Z cutoff
was found to increase the chemical space coverage while
having relatively small effect on the prediction accuracy
(Fig. 4). Furthermore, when Z cutoff increased from 0.5 to
8, the models were still predicting BBB+ compounds with
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Fig. 1. The effect of the AD on the model prediction accuracy for the
second (a) and third (b) external evaluation sets.
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higher accuracy than BBB− compounds. It is generally hard
to assign a standard AD threshold that should be used in all
cases. Typically, we tend to use a conservative Z cutoff of 0.5
to ensure the high prediction accuracy for all (eligible)
compounds in the external sets. However, results of this
study illustrate that the external prediction accuracy was not
affected significantly by increasing the AD, i.e., Z cutoff, up
to values as high as 8, which allowed making accurate
predictions for more than half of the compounds in the
second and third external evaluation sets.

Consensus Prediction

An important question related to the above discussion is
how to select the most predictive QSAR model from all
available models for a given endpoint. If we use models that
are considered acceptable using criteria 1, 2, 3a, 3b, and 4 and
use R2 for the self-correlation of the modeling set to evaluate
the quality of the QSAR models, then the top-ranking model
is kNN-MolConnZ. However, it was the SVM-Dragon model
that gave the best prediction for the first external evaluation
set. Thus, relying on the results obtained for the modeling set
only could obfuscate the choice of the best modeling
technique to achieve the most accurate external prediction.
Our previous experience suggests that the consensus
prediction that is based on the results obtained by all
predictive models always provides the most stable solution.

In general, consensus prediction implies averaging the
predictions for each compound made by individual models
for continuous QSAR, or by majority voting for classification
QSAR, using all models passing the validation criteria.
Precision and stability of the consensus prediction is a
consequence of the Central Limit Theorem (53). This
approach naturally avoids the need for (the best) model
selection based on the statistics for the training (or even
training and test) set.

The ultimate consensus prediction was made by averaging
the logBB values predicted by all six types of models. Thus, for
the modeling set of 144 compounds we averaged the calculated
logBB values resulting from the six types of models. The R2

and MAE for the consensus self-correlation were 0.91 and
0.21, respectively, which is close to the best statistics for any
individual model.

To ensure the reliability of the external prediction, we
only predicted the logBB value for those compounds in the
external evaluation sets that were within the AD of at least
half of the six types of models. Four compounds were
considered to be out of the AD for more than half of the
six types of models. Therefore, we did not consider these four
compounds in the consensus prediction (see Supplemental
Materials). The R2, MAE, and coverage of the consensus
prediction were 0.73, 0.36, and 73%, respectively; these
values are close to those obtained with the best individual
model. If we only select compounds that are within the AD of
all six types of models for consensus prediction, the R2, MAE
and coverage were 0.78, 0.37, and 60%, respectively.

QSAR models were found to predict accurately the BBB
penetration for most of the compounds in the first external
evaluation set which were within the AD. For example,
compound 12 in this external set has a relatively small
prediction error (Fig. 5a). It is interesting to notice that some
of its nearest neighbors in the chemical space do not look
similar to this compound in terms of their formal chemical
structures. Mahar Doan et al. (54) found that drugs for the
central nervous system (CNS) (CNS drugs), which are likely
to cross BBB have fewer hydrogen bond donors, fewer
positive charges, greater lipophilicity, and lower polar surface
area (PSA) than non-CNS drugs, which cannot cross the
BBB. These results are in agreement with our observations
when comparing the related descriptors of compound 12 and
its four nearest neighbors.

Compound 13 (Y-G19) has a relatively large error when
comparing its predicted and experimental logBB values. In
fact, compound 13 has been considered to be an outlier or has
a large prediction error in other computational models as well
(23). The values of the primary descriptors of this compound
and its four nearest neighbors are close to each other (cf.
Fig. 5b). However, the BBB permeability values for these five
compounds vary greatly, which is the direct reason why the
logBB values for compound 13 are predicted inaccurately
(mind that in the kNN method the predicted value for
compounds is the average of experimental measurements
for compounds in the training set that are most similar to that
compound). The large difference of logBB values among
these five compounds may be because some of them are
substrates of the efflux transporter, which pumps the drugs
out of capillary endothelial cells and therefore prevents them
from crossing the BBB. Y-G20, one of Y-G19’s nearest
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Fig. 4. The effect of the AD on the relationship between prediction
accuracy and chemical space coverage for the SVM-MOE model of
BBB permeability for the second (a) and third (b) external evaluation
sets.
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neighbors, has been reported as an H1 receptor agonist (55).
Meanwhile, antihistamine drugs have been proven to be P-gp
substrates (56). Therefore it is possible that Y-G20 is also a
substrate of P-gp. This hypothesis may explain why Y-G20
has much lower logBB value than its nearest neighbors.
Similarly, Y-G19 may also be the substrate of P-gp. This
analysis underlies the complexity of building global QSAR
models of BBB penetration for diverse chemical compounds
with multiple possible mechanisms of actions. Thus in
statistical terms, Y-G19 appears as an activity outlier. After
excluding this outlier, the statistical parameters for the
consensus prediction of the first external evaluation set
improved from R2=0.73, MAE=0.36 to R2=0.80, MAE=0.29.

The consensus prediction accuracy of the six types of
models for the second and third external evaluation sets were
86.5% and 80.9%, respectively, which is a little lower than the
accuracies of the best individual models (cf. Fig. 1). However,
according to our experience the consensus prediction is more

reliable and stable (57). The use of the AD can also help
increasing the accuracy of the consensus prediction. Applying
the consensus prediction without any AD threshold decreased
the prediction accuracy for the second and third external
evaluation sets to 67.7% and 55.1%, respectively (Fig. 1).

Interpretation of Predictive QSAR Models

Several descriptors were found to be most frequently used
in acceptable models, suggesting that they may play a critical
role in defining BBB permeability of organic compounds. The
top ten descriptors of each type used in the kNN modeling
approach are shown in Table IV, along with their frequencies
of occurrence in acceptable models and their interpretation
(Table V). Although many different types of descriptors were
employed for model development, three descriptors were
found to be used most frequently in the six types of
acceptable models: PSA, the octanol/water partition coeffi-
cient (logP), and the number of hydrogen bond donor and
acceptor atoms. PSA has been established as an important
descriptor for drug transport properties such as BBB
penetration (22,58). Van de Waterbeemd et al. (23,59) found
that the upper limit for PSA in a molecule that is expected to
penetrate into the brain is around 90 Å2. Moreover, it is
known that relatively lipophilic drugs can cross the BBB by
passive diffusion, which is influenced by their H-bonding
capacity (22). The Iyer group has reported that logBB
increases if logP of the solute molecule increases (58).
Furthermore, active transporters are known to facilitate the
BBB penetration of polar molecules. Therefore the hydrogen
bond donor and acceptor counts, which may influence the
binding affinity between membrane transporters and organic
compounds, have been also recognized as important factors
affecting the BBB permeability.

Figure 6 shows how BBB+ and BBB− compounds can be
distinguished based on the values of the most frequent
descriptors. Obviously, descriptors with larger differences in
their values for BBB+ vs. BBB− compounds should be
underlined since they may influence the BBB permeability
of drugs. Besides these three obviously important descriptors
(discussed above), E-state indices in MolconnZ and van der
Waals surface areas (VSA) descriptors in MOE do perform
well in separating BBB+ from BBB− compounds. Some
fragments descriptors also work well, e.g., nArNHR (number
of secondary aromatic amines, positive contribution to logBB
values) and C–040(R–C(=X)–X/R–C#X/X=C=X fragments
count, negative contribution).

Five of the top ten most frequently used MolconnZ
descriptors belong to the classes of atom-level E-state, atom
type E-state and global E-state indices, indicating that E-state
descriptors serve as structural features that define the BBB
penetration. The E-state indices have been used to develop
models for many types of biological activities and physical
properties (60). It needs to be pointed out that the E-state
descriptors are not just counts of fragments. They also reflect
the influence of the intermolecular environment. Therefore
they contain more information than those descriptors that are
based on the presence/absence or simple count of a given
fragment (61). The information encoded in the E-state value
for an atom or an atom type is its electron accessibility, which
is important in non-covalent intermolecular interaction, such
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Fig. 5. Examples of compounds in the first external evaluation set
with small (a) or large (b) prediction errors. Structural fragments in
bold highlight the aromatic N atoms. PEOE_VSA_POS: total positive
van der Waals surface area, nHBa: number of H-bond acceptors,
TPSA: polar surface area, logP: log of the octanol/water partition
coefficient.
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as drug-receptor interactions, partition, vaporization, and
solubility (60). Therefore, their significance may be related
to the binding affinity of compounds with efflux transporters
or the passive diffusion capability.

The importance of E-state descriptors in predicting BBB
penetration has been reported in other studies. The Hall

Table IV. Most Frequently Used Descriptors in Validated QSAR Models

Descriptor name Frequency rate (%) Interpretation

MolConnZ descriptors
Qsv 22.9 Average polarity descriptor
SHBint2* 21.2 Internal H-bond counts and E-states
Qv 19.9 A whole molecule polarity index that decreases in value as the polarity increases
nHBa 18.1 Number of strong H bond acceptors
SaaN* 16.7 Atom-type E-state sums
naaN* 16.5 Atom-type counts
Gmax 13.8 The maximum atom level E-state value in a molecule
nN 13.4 Number of element N
nHBd 13.3 Number of strong H bond donors
SssCH2* 12.4 Atom type E state indices
Dragon descriptors
TPSA(Tot) 40.3 Topological polar surface area using N, O, S, P polar contributions
T (N..O) 34.1 Sum of topological distances between N..O
MLOGP2 34.0 Squared Moriguchi octanol–water partition coefficient (logP2)
C-040 33.8 R–C(=X)–X/R–C#X/X=C=X fragments count
nArNHR* 33.2 Number of secondary amines (aromatic)
BLTF96 29.8 Verhaar model of Fish base-line toxicity from MLOGP (mmol/l)
nHAcc 27.7 Number of acceptor atoms for H-bonds (N, O, F)
nOHt 26.4 Number of tertiary alcohols
nCrs 25.4 Number of ring secondary C (sp3)
nHDon 24.5 Number of donor atoms for H-bonds (N and O)
MOE descriptors
TPSA 57.1 Polar surface area
a_don 55.3 Number of hydrogen bond donor atoms
PEOE_VSA-1 50.6 Partial charge descriptors
a_nF 45.9 Number of fluorine atoms
SlogP_VSA6 42.9 Subdivided surface areas
lip_acc 37.7 The number of O and N atoms
PEOE_VSA+5 37.7 Partial charge descriptors
logP 32.9 Log of the octanol/water partition coefficient
GCUT_SLOGP_2 30.6 Adjacency and distance matrix descriptors
PEOE_VSA_POS 30.0 Fractional positive van der Waals surface area

Descriptors in italics are those used most frequently in all models. Descriptors with asterisk are illustrated in Table V.

Table V. Illustrations of Some Descriptors

SHBint2 Sum of E-state of 
strength for potential 
hydrogen bonds if 
separated by 2 skeletal 
bonds.

D A

H

1 2

Product of the E-state
and HE-state values

SaaN Sum of E-States for 
atoms of this type: aan=2
aromatic bonds to N.

N R Bond type E-state value

naaN Number of atoms of this 
type: aan=2 aromatic 
bonds to N.

N R Bond type count

SssCH2 Sum of E-state for 
methylenes.

CH2: Bond type E-state value

nArNHR Number of secondary 
amines (aromatic). N

Ar

R H
Fig. 6. Comparison of the (normalized) values for frequently used
descriptors for compounds classified as BBB+ or BBB−.
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group used MDL QSAR to model BBB partitioning and
found that the SaaN descriptor (sum of E-states for N with 2
aromatic bonds) has a negative correlation with logBB
values (62), which agrees with our observations (Fig. 6). It
is possible that this type of atomic bond may influence the
potential of the compound to be the substrate of P-gp,
considering that many pharmacophore analyses of P-gp
substrates mentioned the importance of nitrogen and amines
(63). Hall et al. also identified the Qv descriptor, which is a
molecule polarity index. It is reported to have a positive
correlation with logBB values and this also agrees with our
observations (Fig. 6) (62).

Five out of the ten most frequently used MOE descrip-
tors are related to VSA. PSA (the sum of the VSA of oxygen
atoms, nitrogen atoms, and attached hydrogen atoms in a
molecule) was used in half of the QSAR models. Besides,
PEOE_VSA-1, SlogP_VSA6, PEOE_VSA+5, and PEOE_
VSA_POS, which are partial VSA descriptors, are also
frequently used (cf. Table IV for details). These descriptors
are the sum of the atomic VSA contributions of each atom
within a certain range of a specific property. SlogP_VSA
descriptors capture the hydrophobic and hydrophilic effects
that are important for binding to the receptors. PEOE_VSA
descriptors capture the direct electrostatic interactions.
PEOE_VSA_POS is the total positive VSA (64). The Labute
group developed a linear model of logBB as a function of
PEOE_VSA, SlogP_VSA and SMR_VSA descriptors and the
resulting R2 was 0.83, indicating that VSA, not only PSA,
should affect BBB permeability (64). VSA descriptors have
several advantages: they are weakly correlated with each
other; they are useful not only for physical property modeling
but also in receptor affinity modeling; they are unlike the
“whole molecule” properties that cannot distinguish the
details of important substructural differences (64).

Litman et al. reported that the binding affinity of drugs to
P-gp ATPase is highly correlated with VSA rather than logP
(65), which suggests that binding between drugs and P-gp
takes place across a wide interaction surface of the protein.
Therefore we may conclude that compounds with higher
VSA are more likely to be the substrates of P-gp; thus they
probably have lower logBB values. The analysis of VSA
descriptors identified in our QSAR models as significant has
shown that not all partial VSA descriptors have a negative
contribution to logBB values. Some of them, such as
PEOE_VSA-1, have a positive contribution (Fig. 6).

Some other descriptors also have been proven to be
important in predicting the BBB permeability of drugs, such as
lip_acc (Lipinski’s number of H-bond acceptors, such as N and
O). Norinder et al. used the number of N and O atoms as an
index of BBB penetration: if N+O is five or less in a molecule,
it has a high chance of entering the brain; if logP−(N+O)>0,
then logBB is positive (23). We can also find in Fig. 6 that
lip_acc has a negative correlation with logBB values and logP
has a positive correlation. Pharmacophore analysis of P-gp
substrates indicated that the chlorine or fluorine substitutions
on aromatic rings increase binding capability with P-gp (63,
66), but it disagrees with our observation that a_nF has a
positive contribution to logBB values (Fig. 6). The reason may
be that increasing the number of aromatic fluorine atoms
would affect logP, VSA and other descriptors, which cannot be
captured by pharmacophore models.

This analysis of frequent descriptors suggests that
statistical QSAR models using descriptors derived from two-
dimensional molecular topology are capable of providing
meaningful interpretations concerning possible mechanisms
of BBB penetration. Nevertheless, none of the descriptors
could explain the observed distribution of biological data
independently. Thus, we stress that each individual model was
based on the use of many descriptors concurrently. We have
uncovered the important contributions of several obvious
descriptors of shape and surface area that are easy to
interpret and that have been established as significant
determinants of BBB penetration by other scientists. How-
ever, we have also established that less obvious (and more
difficult to interpret) descriptors such as E-state indices also
play a significant role in ensuring the high overall predictive
power of our models.

CONCLUSIONS

We have applied a combinatorial QSAR approach to a
dataset of 159 organic compounds with known logBB values.
144 of the 159 compounds were selected randomly as a
modeling set and the remaining 15 were considered as the
first external evaluation set. The resulting QSAR models
were used further to evaluate BBB values for two external
datasets of compounds classified experimentally as perme-
able (BBB+) or non-permeable (BBB−). The second exter-
nal evaluation set included 99 commercially available drugs,
and the third external evaluation set included 267 organic
compounds. High prediction accuracy of training set models
was demonstrated for all three external sets; however, the
uneven distribution of BBB+/BBB− compounds in the
modeling set led to the much higher prediction ability of
the models for BBB+ compounds vs. BBB− compounds. The
consensus prediction using all statistically significant training
set models was found to provide a better balance between
prediction accuracy and chemical space coverage than any
individual model.

The analysis of the most frequent descriptors implicated
in statistically significant and externally predictive statistical
QSAR models afforded model interpretation in terms of
chemical features influencing the BBB permeability. Some
well-known descriptors such as PSA, logP, and the number of
H-bond donor/acceptor atoms were found to dominate the
models. However, additional molecular descriptors such as E-
state indices and VSA descriptors were also found to
contribute to statistically significant and externally predictive
models. These descriptors could be associated with passive
diffusion and bind affinity to efflux transporters.

In summary, we have compiled arguably the largest
publicly available dataset of diverse organic molecules with
experimentally available logBB values. We have shown that
using the combinatorial QSAR approach and consensus
prediction it is possible to build BBB permeability models with
high external predictive accuracy. This analysis of resulting
models in terms of significant chemical descriptors may facilitate
the further exploration of the factors that influence the drug
distribution between the bloodstream and the brain. These
models can be used for estimating the BBB penetration of drug
candidates at the early stages of drug discovery projects and
exploring their intrinsic penetration mechanisms.
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